网上有关“数学简便计算方法技巧四年级简单易懂”话题很是火热,小编也是针对数学简便计算方法技巧四年级简单易懂寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
1.提取公因式
这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。
注意相同因数的提取。
例如:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
2.借来借去法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难。
考试中,看到有类似998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。
例如:
9999+999+99+9
=9999+1+999+1+99+1+9+1-4
3.拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆还要注意不要改变数的大小哦。
例如:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
4.加法结合律
注意对加法结合律
(a+b)+c=a+(b+c)
的运用,通过改变加数的位置来获得更简便的运算。
例如:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
5.拆分法和乘法分配律结合
这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一个整数的时候,要首先考虑拆分。
例如:
34×9.9 = 34×(10-0.1)
案例再现:57×101=?
6.利用基准数
在一系列数种找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。
例如:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
7.利用公式法
(1) 加法:
交换律,a+b=b+a
结合律,(a+b)+c=a+(b+c)
(2) 减法运算性质:
a-(b+c)=a-b-c,
a-(b-c)=a-b+c
a-b-c=a-c-b
(a+b)-c=a-c+b=b-c+a
(3):乘法(与加法类似):
交换律,a*b=b*a
结合律,(a*b)*c=a*(b*c)
分配率,(a+b)xc=ac+bc
(a-b)*c=ac-bc
(4) 除法运算性质(与减法类似):
a÷(b*c)=a÷b÷c
a÷(b÷c)=a÷bxc
a÷b÷c=a÷c÷b
(a+b)÷c=a÷c+b÷c
(a-b)÷c=a÷c-b÷c
前边的运算定律、性质公式很多是由于去掉或加上括号而发生变化的。其规律是同级运算中,加号或乘号后面加上或去掉括号,后面数值的运算符号不变。
8.裂项法
分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法。
常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
分数裂项的三大关键特征:
(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”
(3)分母上几个因数间的差是一个定值。
公式:
四年级简便运算的技巧和方法是什么?
四年级上册数学简便运算的方法有以下几种:
1、“凑整”先算
就是将能够凑成整数的先凑起来算,这种方式一年级的时候就已经学了,也就是凑十法的拓展。
例题:计算:28+54+46
28+54+46=28+(54+46)=28+100=128
因为54+46=100是个整百的数,所以先把它们的和算出来。
2、改变运算顺序
在只有“+”、“-”号的混合算式中,运算顺序可改变,这个在后面就叫交换律。现在只要让孩子理解可以互换就好。这个学校老师也是应该有讲的,而且在加减法计算的过程中运用也是比较广泛。
例题:计算:85-17+18
85-17+18=85+(18-17)=85+1=86
把+18带着符号搬家,搬到-17的前面,然后先算18-17=1。
3、计算等差连续数的和
这种在奥数的运用比较广,这样在计算的时候会节省很多时间。由于中间有除法,人教版的孩子可能不会理解第二种的一半,家长需要费心下。其他版本的没有问题可以直接套用。这种方法推广到100,到1000一样可行,即对后面的三年级起同样受用。
相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:
1,2,3,4,5,6,7,8,9
1,3,5,7,9
2,4,6,8,10
3,6,9,12,15
4,8,12,16,20
……都是等差连续数。
①等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:和=中间数 X 个数1。
例题:1+2+3+4+5+6+7+8+9=5×9 (中间数是5)=45,共9个数。
②等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:和=(首数+末数)X ?总数的一半。
例题:1+2+3+4+5+6=(1+6)×3=7×3=21,共10个数,个数的一半是5,首数是1,末数是10。
4、拆数法
如:101×9,可以把101拆成100+1,所以得到:
101×9=(100+1)×9=100×9+1×9=900+9=909。
5、25×4 特殊数法
25×4=100,125×4=500 ,125×8=1000……
75=25×3,125=25×5……
12=4×3,16=4×4……
方法一:带符号搬家法
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,可以“带符号搬家”。例如:a+b+c=a+c+b、a×b×c=a×c×b等等。
方法二:去括号法
在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加)。
方法三:乘法分配律法
分配法:括号里是加或减运算,与另一个数相乘,注意分配;提取公因式:注意相同因数的提取;注意构造,让算式满足乘法分配律的条件。
方法四:拆分法
拆分法属于为了方便计算把一个数拆成几个数,这需要掌握一些“好朋友”,如:2和5,4和5,4和25,8和125等。分拆还要注意不要改变数的大小。
方法五:裂项法
分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
关于“数学简便计算方法技巧四年级简单易懂”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
本文来自作者[雅玉]投稿,不代表亚南号立场,如若转载,请注明出处:https://ynbtpf.com/yanan/4606.html
评论列表(3条)
我是亚南号的签约作者“雅玉”
本文概览:网上有关“数学简便计算方法技巧四年级简单易懂”话题很是火热,小编也是针对数学简便计算方法技巧四年级简单易懂寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,...
文章不错《数学简便计算方法技巧四年级简单易懂》内容很有帮助