网上有关“新课标高中生物必修概念总结”话题很是火热,小编也是针对新课标高中生物必修概念总结寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
高一生物必修(1)知识点整理
第一章 走近细胞
第一节 从生物圈到细胞
一、相关概念、
细 胞:是生物体结构和功能的基本单位。除了病毒以外,所有生物都是由细胞构成的。细胞是地球上最基本的生命系统
生命系统的结构层次: 细胞→组织→器官→系统(植物没有系统)→个体→种群
→群落→生态系统→生物圈
二、病毒的相关知识:
1、病毒(Virus)是一类没有细胞结构的生物体。主要特征:
①、个体微小,一般在10~30nm之间,大多数必须用电子显微镜才能看见;
②、仅具有一种类型的核酸,DNA或RNA,没有含两种核酸的病毒;
③、专营细胞内寄生生活;
④、结构简单,一般由核酸(DNA或RNA)和蛋白质外壳所构成。
2、根据寄生的宿主不同,病毒可分为动物病毒、植物病毒和细菌病毒(即噬菌体)三大类。根据病毒所含核酸种类的不同分为DNA病毒和RNA病毒。
3、常见的病毒有:人类流感病毒(引起流行性感冒)、SARS病毒、人类免疫缺陷病毒(HIV)[引起艾滋病(AIDS)]、禽流感病毒、乙肝病毒、人类天花病毒、狂犬病毒、烟草花叶病毒等。
第二节 细胞的多样性和统一性
一、细胞种类:根据细胞内有无以核膜为界限的细胞核,把细胞分为原核细胞和真核细胞
二、原核细胞和真核细胞的比较:
1、原核细胞:细胞较小,无核膜、无核仁,没有成形的细胞核;遗传物质(一个环状DNA分子)集中的区域称为拟核;没有染色体,DNA 不与蛋白质结合,;细胞器只有核糖体;有细胞壁,成分与真核细胞不同。
2、真核细胞:细胞较大,有核膜、有核仁、有真正的细胞核;有一定数目的染色体(DNA与蛋白质结合而成);一般有多种细胞器。
3、原核生物:由原核细胞构成的生物。如:蓝藻、细菌(如硝化细菌、乳酸菌、大肠杆菌、肺炎双球菌)、放线菌、支原体等都属于原核生物。
4、真核生物:由真核细胞构成的生物。如动物(草履虫、变形虫)、植物、真菌(酵母菌、霉菌、粘菌)等。
三、细胞学说的建立:
1、1665 英国人虎克(Robert Hooke)用自己设计与制造的显微镜(放大倍数为40-140倍)观察了软木的薄片,第一次描述了植物细胞的构造,并首次用拉丁文cella(小室)这个词来对细胞命名。
2、1680 荷兰人列文虎克(A. van Leeuwenhoek),首次观察到活细胞,观察过原生动物、人类精子、鲑鱼的红细胞、牙垢中的细菌等。
3、19世纪30年代德国人施莱登(Matthias Jacob Schleiden) 、施旺(Theodar Schwann)提出:一切植物、动物都是由细胞组成的,细胞是一切动植物的基本单位。这一学说即“细胞学说(Cell Theory)”,它揭示了生物体结构的统一性。
第二章 组成细胞的分子
第一节 细胞中的元素和化合物
一、1、生物界与非生物界具有统一性:组成细胞的化学元素在非生物界都可以找到
2、生物界与非生物界存在差异性:组成生物体的化学元素在细胞内的含量与在非生物界中的含量明显不同
二、组成生物体的化学元素有20多种:
大量元素:C、 O、H、N、S、P、Ca、Mg、K等;
微量元素:Fe、Mn、B、Zn、Cu、Mo;
基本元素:C;
主要元素;C、 O、H、N、S、P;
细胞含量最多4种元素:C、 O、H、N;
水
无机物 无机盐
组成细胞 蛋白质
的化合物 脂质
有机物 糖类
核酸
三、在活细胞中含量最多的化合物是水(85%-90%);含量最多的有机物是蛋白质(7%-
10%);占细胞鲜重比例最大的化学元素是O、占细胞干重比例最大的化学元素是C。
第二节 生命活动的主要承担者------蛋白质
一、相关概念:
氨 基 酸:蛋白质的基本组成单位 ,组成蛋白质的氨基酸约有20种。
脱水缩合:一个氨基酸分子的氨基(—NH2)与另一个氨基酸分子的羧基(—COOH)相连接,同时失去一分子水。
肽 键:肽链中连接两个氨基酸分子的化学键(—NH—CO—)。
二 肽:由两个氨基酸分子缩合而成的化合物,只含有一个肽键。
多 肽:由三个或三个以上的氨基酸分子缩合而成的链状结构。
肽 链:多肽通常呈链状结构,叫肽链。
二、氨基酸分子通式:
三、 氨基酸结构的特点:每种氨基酸分子至少含有一个氨基(—NH2)和一个羧基(—COOH),并且都有一个氨基和一个羧基连接在同一个碳原子上(如:有—NH2和—COOH但不是连在同一个碳原子上不叫氨基酸);R基的不同导致氨基酸的种类不同。
四、蛋白质多样性的原因是:组成蛋白质的氨基酸数目、种类、排列顺序不同,多肽链空间结构千变万化。
五、蛋白质的主要功能(生命活动的主要承担者):
① 构成细胞和生物体的重要物质,如肌动蛋白;
② 催化作用:如酶;
③ 调节作用:如胰岛素、生长激素;
④ 免疫作用:如抗体,抗原;
⑤ 运输作用:如红细胞中的血红蛋白。
六、有关计算:
① 肽键数 = 脱去水分子数 = 氨基酸数目 — 肽链数
② 至少含有的羧基(—COOH)或氨基数(—NH2) = 肽链数
第三节 遗传信息的携带者------核酸
一、核酸的种类:脱氧核糖核酸(DNA)和核糖核酸(RNA)
二、核 酸:是细胞内携带遗传信息的物质,对于生物的遗传、变异和蛋白质的合成具有重要作用。
三、组成核酸的基本单位是:核苷酸,是由一分子磷酸、一分子五碳糖(DNA为脱氧核糖、RNA为核糖)和一分子含氮碱基组成 ;组成DNA的核苷酸叫做脱氧核苷酸,组成RNA的核苷酸叫做核糖核苷酸。
四、DNA所含碱基有:腺嘌呤(A)、鸟嘌呤(G)和胞嘧啶(C)、胸腺嘧啶(T)
RNA所含碱基有:腺嘌呤(A)、鸟嘌呤(G)和胞嘧啶(C)、尿 嘧 啶(U)
五、核酸的分布:真核细胞的DNA主要分布在细胞核中;线粒体、叶绿体内也含有少量的DNA;RNA主要分布在细胞质中。
第四节 细胞中的糖类和脂质
一、相关概念:
糖类:是主要的能源物质;主要分为单糖、二糖和多糖等
单糖:是不能再水解的糖。如葡萄糖。
二糖:是水解后能生成两分子单糖的糖。
多糖:是水解后能生成许多单糖的糖。多糖的基本组成单位都是葡萄糖。
可溶性还原性糖:葡萄糖、果糖、麦芽糖等
二、糖类的比较:
分类 元素 常见种类 分布 主要功能
单糖 C
H
O 核糖 动植物 组成核酸
脱氧核糖
葡萄糖、果糖、半乳糖 重要能源物质
二糖 蔗糖 植物 ∕
麦芽糖
乳糖 动物
多糖 淀粉 植物 植物贮能物质
纤维素 细胞壁主要成分
糖原(肝糖原、肌糖原) 动物 动物贮能物质
三、脂质的比较:
分类 元素 常见种类 功能
脂质 脂肪 C、H、O ∕ 1、主要储能物质
2、保温
3、减少摩擦,缓冲和减压
磷脂 C、H、O
(N、P) ∕ 细胞膜的主要成分
固醇 胆固醇 与细胞膜流动性有关
性激素 维持生物第二性征,促进生殖器官发育
维生素D 有利于Ca、P吸收
第五节 细胞中的无机物
一、有关水的知识要点
存在形式 含量 功能 联系
水 自由水 约95% 1、良好溶剂
2、参与多种化学反应
3、运送养料和代谢废物 它们可相互转化;代谢旺盛时自由水含量增多,反之,含量减少。
结合水 约4.5% 细胞结构的重要组成成分
二、无机盐(绝大多数以离子形式存在)功能:
①、构成某些重要的化合物,如:叶绿素、血红蛋白等
②、维持生物体的生命活动(如动物缺钙会抽搐)
③、维持酸碱平衡,调节渗透压。
第三章 细胞的基本结构
第一节 细胞膜------系统的边界
一、细胞膜的成分:主要是脂质(约50%)和蛋白质(约40%),还有少量糖类
(约2%--10%)
二、细胞膜的功能:
①、将细胞与外界环境分隔开
②、控制物质进出细胞
③、进行细胞间的信息交流
三、植物细胞含有细胞壁,主要成分是纤维素和果胶,对细胞有支持和保护作用;其性质是全透性的。
第二节 细胞器----系统内的分工合作
一、相关概念:
细 胞 质:在细胞膜以内、细胞核以外的原生质,叫做细胞质。细胞质主要包括细胞质基质和细胞器。
细胞质基质:细胞质内呈液态的部分是基质。是细胞进行新陈代谢的主要场所。
细 胞 器:细胞质中具有特定功能的各种亚细胞结构的总称。
二、八大细胞器的比较:
1、线粒体:(呈粒状、棒状,具有双层膜,普遍存在于动、植物细胞中,内有少量DNA和RNA内膜突起形成嵴,内膜、基质和基粒中有许多种与有氧呼吸有关的酶),线粒体是细胞进行有氧呼吸的主要场所,生命活动所需要的能量,大约95%来自线粒体,是细胞的“动力车间”
2、叶绿体:(呈扁平的椭球形或球形,具有双层膜,主要存在绿色植物叶肉细胞里),叶绿体是植物进行光合作用的细胞器,是植物细胞的“养料制造车间”和“能量转换站”,(含有叶绿素和类胡萝卜素,还有少量DNA和RNA,叶绿素分布在基粒片层的膜上。在片层结构的膜上和叶绿体内的基质中,含有光合作用需要的酶)。
3、核糖体:椭球形粒状小体,有些附着在内质网上,有些游离在细胞质基质中。是细胞内将氨基酸合成蛋白质的场所。
4、内质网:由膜结构连接而成的网状物。是细胞内蛋白质合成和加工,以及脂质合成的“车间”
5、高尔基体:在植物细胞中与细胞壁的形成有关,在动物细胞中与蛋白质(分泌蛋白)的加工、分类运输有关。
6、中心体:每个中心体含两个中心粒,呈垂直排列,存在于动物细胞和低等植物细胞,与细胞的有丝分裂有关。
7、液泡:主要存在于成熟植物细胞中,液泡内有细胞液。化学成分:有机酸、生物碱、糖类、蛋白质、无机盐、色素等。有维持细胞形态、储存养料、调节细胞渗透吸水的作用。
8、溶酶体:有“消化车间”之称,内含多种水解酶,能分解衰老、损伤的细胞器,吞噬并杀死侵入细胞的病毒或病菌。
三、分泌蛋白的合成和运输:
核糖体(合成肽链)→内质网(加工成具有一定空间结构的蛋白质)→
高尔基体(进一步修饰加工)→囊泡→细胞膜→细胞外
四、生物膜系统的组成:包括细胞器膜、细胞膜和核膜等。
第三节 细胞核----系统的控制中心
一、细胞核的功能:是遗传信息库(遗传物质储存和复制的场所),是细胞代谢和遗传的控制中心;
二、细胞核的结构:
1、染色质:由DNA和蛋白质组成,染色质和染色体是同样物质在细胞不同时期的两种存在状态。
2、核 膜:双层膜,把核内物质与细胞质分开。
3、核 仁:与某种RNA的合成以及核糖体的形成有关。
4、核 孔:实现细胞核与细胞质之间的物质交换和信息交流
新课标高中生物选修3的三个工程所有技术 和生态工程的原理归类
生长素在根部运输的几点认识
在人教版新课标高中生物必修3第3章第1节《植物生长素的发现》一节中,茎中生长素的运输方向是形态学上端到下端的极性运输,那么,在植物根中生长素的运输方向是什么呢?
按照目前流行的各种高中生物教辅资料中,在解释把植物横放后根的向重力性时生长原因时,一般都认为:是根尖产生了生长素,在重力的作用下,由根尖的远地侧向近地侧横向运输,然后再向根基部方向运输,由于根对生长素很敏感,故抑制了近地侧根细胞的生长,使远地侧根细胞生长速度较快而出现向重力性生长。也就是说,根中生长素是由根尖向根基部的极性运输。然而,这种说法是不正确的。
1根中生长素的来源
IAA主要是在植物的顶端分生组织中合成的,合成后即被运输到植株各部和根中。IAA的运输是单方向的,只能从植物顶端往下运输而不能反过来从下面往顶端运输,所以称为极性运输[1]。根据根向重力性Evans-Moore模型,根直立生长时茎尖运向根冠的IAA在根中四周平均分布[2]。高中教材上也提到,生长素主要产生于幼嫩的芽、叶,发育中的种子等。生长素在植物中分布很广,但以生长旺盛的器官和组织如正在生长的茎尖和根尖的分生组织、胚芽鞘、受精后的子房和幼嫩的种子等含量较多,而在衰老的组织和器官中含量甚少[2]。从这里可以这样理解:根尖尤其是根尖分生组织中的较多生长素不是根尖产生的,而是茎尖产生后向下运输一直运输到根尖,并作用于根尖的。
2?根中生长素的极性运输
植物根中的生长素也表现极性运输的性质,不过是由根基部向根尖方向的运输,即向顶运输[2]。
目前,对根的向重性普遍是这样解释的,也就是Evans(1996)提出的根向重力性Evans-Moore模型:IAA在地上部合成,经维管系统运输到根,当根尖处于与重力线方向平行时,根冠细胞中淀粉体沉降在柱细胞的底端,此时Ca2+和运到根冠的IAA向四周平均分配。然后IAA再经根皮层向基方向运至根伸长区,以促进伸长区细胞均衡伸长,使根仍与重力线方向平行生长(图A)。但当根处于水平方向时(图B),淀粉体沉降至柱细胞下侧,从而促进Ca2+与IAA在下侧释放。Ca2+还增强IAA进入向基性的运输流,使IAA更多地经皮层运输到根的下侧,并在下侧积累。这种超最适浓度的IAA会抑制根下侧的伸长,从而引起根向下弯曲的运动反应。
根据以上可知,根中生长素在根的微管系统中是从根基部向根尖的极性运输。
3?根中生长素的非极性运输
但是有人用14C-IAA体外供给植物的试验发现,根部吸收的大多随蒸腾流沿导管上运并转至其他部位[2]。这是怎么回事呢?
实际上,除了极性运输之外,在植物体中还存在非极性的长距离运输方式。非极性运输的方向决定于两端有机物浓度差等因素,是通过韧皮部进行运输的。实际上植物体内的大部分束缚型生长素也是通过韧皮部运输的。束缚型生长素无生理活性,在植物体内的运输也没有极性,当束缚型生长素再度水解成游离型生长素时,又表现出生物活性和极性运输。也有人切除根尖或施用IAA的颉颃剂发现一般都能促进根的伸长,说明根尖中的IAA的含量通常处于抑制其生长的范围内。
所以,再结合前面对根的向重力性的解释可以看出,生长素在根(茎)的微管系统中是由根基部向根尖的极性运输,使根尖分布较多,由于根尖浓度大于靠近根尖部位,这种浓度差使得生长素又从根尖沿韧皮部向根基部方向进行非极性运输。而这时的生长素很可能就是束缚型生长素。这可能对侧根的发生具有重要意义。
4?根中生长素的横向运输
生长素在植物的胚芽鞘尖端可以横向运输,是因为尖端没有维管束,当幼根处于水平方向时,根尖部位会发生横向运输吗?根据根向重力性Evans-Moore模型,当根从垂直方向转到水平方向时,根冠柱细胞中淀粉体向重力方向沉降,从而促进Ca2+和IAA在下侧释放[2]。从这里可以看出,在根尖的根冠部位存在生长素的横向运输。
综上所述,根中生长素的运输方向有极性运输、非极性运输、横向运输。根中的生长素主要来自地上部分的茎的幼嫩部位,通过微管系统从根基部向根尖进行极性运输;根尖积累的生长素可以通过韧皮部从根尖向根基部进行非极性运输;根尖的根冠部位在外力作用下(重力)可以发生横向运输。根的形态学上端是根基部,形态学下端是根尖。
第一个是基因工程。 基因工程又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础, 以分子生物学和微生物学的现代方法为手段, 将不同来源的基因(DNA分子),按预先设计的蓝图, 在体外构建杂种DNA分子, 然后导入活细胞, 以改变生物原有的遗传特性、获得新品种、 生产新产品。基因工程技术为基因的结构和功能的研究提供了有力的手段。 它的原理是基因重组。 第二个是蛋白质工程。所谓蛋白质工程,就是利用基因工程手段,包括基因的定点突变和基因表达对蛋白质进行改造,以期获得性质和功能更加完善的蛋白质分子。蛋白质工程是在基因重组技术、生物化学、分子生物学、分子遗传学等学科的基础之上,融合了蛋白质晶体学、蛋白质动力学、蛋白质化学和计算机辅助设计等多学科而发展起来的新兴研究领域。其内容主要有两个方面:根据需要合成具有特定氨基酸序列和空间结构的蛋白质;确定蛋白质化学组成、空间结构与生物功能之间的关系。在此基础之上,实现从氨基酸序列预测蛋白质的空间结构和生物功能,设计合成具有特定生物功能的全新的蛋白质,这也是蛋白质工程最根本的目标之一。 它的原理是利用通过造成一个或几个碱基定点突变,以达到修饰蛋白质分子结构目的的技术,称为基因定点突变技术。 第三个是细胞工程。细胞工程(Cell engineering):(高中概念)是指应用细胞生物学和分子生物学的方法,通过某种工程学手段,在细胞水平或细胞器水平上,按照人们的意愿来改变细胞内的遗传物质,从而获得新型生物或特种细胞产品、或产物的一门综合性科学技术。 其中应用了许多技术, 如细胞融合技术, 核移植技术,染色体或基因移植技术,组织和细胞培养技术。 最后是生态工程 生态工程运用生态学和系统工程原理设计的工艺系统。将生物群落内不同物种共生、物质与能量多级利用、环境自净和物质循环再生等原理与系统工程的优化方法相结合,达到资源多层次和循环利用的目的。如利用多层结构的森林生态系统增大吸收光能的面积、利用植物吸附和富集某些微量重金属以及利用余热繁殖水生生物等。 生态工程的基本原理有以下几点。 (1)、物质循环再生原理
理论基础:物质循环
意义:可避免环境污染及其对系统稳定性和发展的影响
(2)、物种多样性原理
理论基础:生态系统的抵抗力稳定性
意义:生物多样性程度可提高系统的抵抗力稳定性,提高系统的生产力
(3)、协调与平衡原理
理论基础:生物与环境的协调与平衡
意义:生物数量不超过环境承载力,可避免系统的失衡和破坏
(4)、整体性原理
理论基础:社会—经济—自然复合系统
意义:统一协调各种关系,保障系统的平衡与稳定
(5)、系统学与工程学原理
a. 理论基础:系统的结构决定功能原理:分布式优于集中式和环式
意义:改善和优化系统的结构以改善功能
b. 理论基础:系统整体性原理:整体大于部分
意义:保持系统很高的生产力
关于“新课标高中生物必修概念总结”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
本文来自作者[醉蝶]投稿,不代表亚南号立场,如若转载,请注明出处:https://ynbtpf.com/yanan/3114.html
评论列表(3条)
我是亚南号的签约作者“醉蝶”
本文概览:网上有关“新课标高中生物必修概念总结”话题很是火热,小编也是针对新课标高中生物必修概念总结寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您...
文章不错《新课标高中生物必修概念总结》内容很有帮助